Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.750
Filtrar
1.
Trop Anim Health Prod ; 56(3): 108, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507148

RESUMO

Saharan population in Algeria still depending on bovine milk, which suffers from serious constraints undermining its sustainability. Camelus dromedarius milk has experienced growing demand following the emerging market requirements for livestock production and dairy farming over the past decade. The present work aimed at analysing the effect of nutritional regime on milk quality. The differences in pH, Acidity D°, Ash and Fats were significant. The pH was negatively influenced by the intensification conditions such as the much higher use of concentrates. The major constituents of milk were strongly and positively correlated with barley, wheat bran, TN/Kg.DM (Total Nitrogen/ Kg. Dry Matter), Kg.DM, Concentrates and daily watering. The results showed that a good energy-protein balance around 73 g PDI/UFL (Protein Digestible in the Intestine/Energetic Forage Unit for milk production) was beneficial for a better milk protein ratio. The use of corn, soybeans, palm dates and VM-premix (Vitamin Mineral) supplementation were also favourable to the synthesis of fats. Crude fiber and cell walls were better valued in the synthesis of fats with the availability of concentrates and the increasing of TN /Kg.DM and VM-premix rate in dietary regime. The vitamin C content elevate following high ratio of UFL /Kg.DM and PDI/UFL. For thus, the influence of nutritional status can lead to major improvements that need also more advanced and detailed studies.


Assuntos
Camelus , Lactação , Feminino , Animais , Leite/química , Proteínas do Leite/análise , Zea mays , Gorduras/análise , Gorduras/metabolismo , Vitaminas/metabolismo , Dieta/veterinária , Silagem/análise , Rúmen/metabolismo
2.
J Adv Res ; 53: 187-198, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36539077

RESUMO

BACKGROUND: The accumulation of ectopic fats is related to metabolic syndromes with insulin resistance, which is considered as the first hit in obesity-related diseases. However, systematic understanding of the occurrence of ectopic fats is limited, since organisms are capable of orchestrating complicated intracellular signaling pathways to ensure that the correct nutritional components reach the tissues where they are needed. Interestingly, tissue-specific mechanisms lead to different consequences of fat metabolism with different insulin sensitivities. AIM OF REVIEW: To summarize the mechanisms of fat deposition in different tissues including adipose tissue, subcutis, liver, muscle and intestines, in an attempt to elucidate interactive mechanisms involving insulin actions and establish a potential reference for the rational uptake of fat. KEY SCIENTIFIC CONCEPTS OF REVIEW: Tissue-specific fat metabolism serves as a trigger for developing abnormal fat metabolism or as a compensatory agent for regulating normal fat metabolism. Outcomes of de novo lipogenesis and adipogenesis differ in the subcutaneous adipose tissue (SAT), liver and muscle, with the participation of insulin actions. Overload of lipid metabolic capability results in SAT fat expansion, and ectopic fat accumulation implicates impaired lipo-/adipogenesis in SAT. Regulating insulin actions may be a key measure on fat deposition and metabolism in individuals.


Assuntos
Resistência à Insulina , Insulinas , Síndrome Metabólica , Humanos , Metabolismo dos Lipídeos , Tecido Adiposo/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Resistência à Insulina/fisiologia , Gorduras/metabolismo , Insulinas/metabolismo
3.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216234

RESUMO

Atopic dermatitis (AD) is a chronic and relapsing inflammatory skin disease in which dry and itchy skin may develop into skin lesions. AD has a strong genetic component, as children from parents with AD have a two-fold increased chance of developing the disease. Genetic risk loci and epigenetic modifications reported in AD mainly locate to genes involved in the immune response and epidermal barrier function. However, AD pathogenesis cannot be fully explained by (epi)genetic factors since environmental triggers such as stress, pollution, microbiota, climate, and allergens also play a crucial role. Alterations of the epidermal barrier in AD, observed at all stages of the disease and which precede the development of overt skin inflammation, manifest as: dry skin; epidermal ultrastructural abnormalities, notably anomalies of the lamellar body cargo system; and abnormal epidermal lipid composition, including shorter fatty acid moieties in several lipid classes, such as ceramides and free fatty acids. Thus, a compelling question is whether AD is primarily a lipid disorder evolving into a chronic inflammatory disease due to genetic susceptibility loci in immunogenic genes. In this review, we focus on lipid abnormalities observed in the epidermis and blood of AD patients and evaluate their primary role in eliciting an inflammatory response.


Assuntos
Dermatite Atópica/metabolismo , Gorduras/metabolismo , Animais , Epiderme/metabolismo , Humanos , Inflamação/metabolismo , Lipídeos/fisiologia
4.
Int J Mol Sci ; 23(4)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35216326

RESUMO

Neurotensin (NT) is a small peptide with pleiotropic functions, exerting its primary actions by controlling food intake and energy balance. The first evidence of an involvement of NT in metabolism came from studies on the central nervous system and brain circuits, where NT acts as a neurotransmitter, producing different effects in relation to the specific region involved. Moreover, newer interesting chapters on peripheral NT and metabolism have emerged since the first studies on the NT-mediated regulation of gut lipid absorption and fat homeostasis. Intriguingly, NT enhances fat absorption from the gut lumen in the presence of food with a high fat content, and this action may explain the strong association between high circulating levels of pro-NT, the NT stable precursor, and the increased incidence of metabolic disorders, cardiovascular diseases, and cancer observed in large population studies. This review aims to provide a synthetic overview of the main regulatory effects of NT on several biological pathways, particularly those involving energy balance, and will focus on new evidence on the role of NT in controlling fat homeostasis, thus influencing the risk of unfavorable cardio-metabolic outcomes and overall mortality in humans.


Assuntos
Gorduras/metabolismo , Homeostase/fisiologia , Neurotensina/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Doenças Metabólicas/metabolismo
5.
PLoS One ; 17(1): e0262271, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34982778

RESUMO

Age-associated intramuscular adipose tissue (IntraMAT) deposition induces the development of insulin resistance and metabolic syndrome. However, the relationship between IntraMAT and biochemical parameters in older adults remains unclear. The purpose of this study, therefore, was to elucidate the relationship between adiponectin and echo intensity-estimated IntraMAT using ultrasonography in normal-weight older adults (men 9, women 13) and examine biochemical parameters. Blood tests were performed to determine fasting levels of glucose, insulin, hemoglobin A1c, total cholesterol (Total-C), high-density-lipoprotein cholesterol, low-density-lipoprotein cholesterol (LDL-C), free fatty acid, triglycerides (TGs), adiponectin, leptin, high-sensitivity C-reactive protein, and high-sensitivity tumor necrosis factor, and homoeostasis model assessment index of insulin resistance (HOMA-IR). Mean gray-scale echo intensity was calculated as the IntraMAT index of the vastus lateralis. Waist circumference was measured at the level of the navel as the visceral adipose tissue (VAT) index. Echo intensity was significantly inversely correlated with adiponectin or LDL-C, and that was significantly positively correlated with TG. Adiponectin level was inversely correlated with waist circumference. Partial correlation analysis with waist circumference as the control variable revealed that adiponectin was inversely correlated with echo intensity, independent of waist circumference, whereas no such correlation was observed after controlling for LDL-C and TG levels. When biochemical parameters were grouped in the principal component analysis, among men, Total-C, insulin, and HOMA-IR or hemoglobin A1c, and high-sensitivity tumor necrosis factor-alpha were grouped with the same distribution for factors 1 and 2. Among women, glucose, insulin, HOMA-IR, and Total-C or TGs were grouped with the same distribution for factors 1 and 2. These data suggest that adiponectin level is related to IntraMAT content, independent of VAT in normal-weight older adults. The dynamics of adiponectin might not be similar to those of other circulating biochemical parameters in older men and women.


Assuntos
Adiponectina/sangue , Tecido Adiposo/metabolismo , Índice de Massa Corporal , Gorduras/análise , Resistência à Insulina , Músculo Esquelético/metabolismo , Ultrassonografia/métodos , Tecido Adiposo/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Glicemia/análise , Proteína C-Reativa/análise , Gorduras/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/diagnóstico por imagem , Triglicerídeos/sangue
6.
PLoS One ; 17(1): e0261293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077458

RESUMO

Intramuscular fat content is an important determinant of meat quality, and preadipocyte differentiation plays a critical role in intramuscular fat deposition in pigs. However, many types of RNA differentiation, including messenger RNA (mRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA) remain unreported despite their crucial roles in regulating adipogenesis. Chinese Guizhou Congjiang pigs are raised in the Guizhou province of China for their high-quality meat. Therefore, it is important for breeders to explore the mechanisms of proliferation and differentiation of intramuscular adipocytes from the longissimus dorsi muscle of these pigs. In the present study, a transcriptome analysis of intramuscular preadipocytes from Chinese Guizhou Congjiang pigs, including analyses of mRNAs, lncRNAs, and circRNAs at days 0 (D0), 4 (D4), and 8 (D8) was performed. A total of 1,538, 639, and 445 differentially expressed (DE) mRNAs, 479, 192, and 126 DE lncRNAs, and 360, 439, and 304 DE circRNAs were detected between D4 and D0, D8 and D0, and D8 and D4, respectively. Functional analyses identified many significantly enriched RNAs related to lipid deposition, cell differentiation, metabolism processes, and obesity-related diseases, biological processes, and pathways. We identified two lncRNAs (TCONS_00012086 and TCONS_00007245) closely related to fat deposition according to their target genes and tissue expression profiles. Subcellular distribution analysis using quantitative real-time PCR (qRT-PCR) revealed that both TCONS_00012086 and TCONS_00007245 are cytoplasmic lncRNAs. These data provide a genome-wide resource for mRNAs, lncRNAs, and circRNAs potentially involved in Chinese Guizhou Congjiang pig fat metabolism, thus improving our understanding of their function in adipogenesis.


Assuntos
Adipócitos/citologia , MicroRNAs/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Análise de Sequência de RNA/veterinária , Adipócitos/química , Adipogenia , Animais , Diferenciação Celular , Células Cultivadas , China , Gorduras/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metabolismo dos Lipídeos , Carne/análise , Suínos
7.
Rapid Commun Mass Spectrom ; 36(6): e9236, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-34897861

RESUMO

RATIONALE: The mechanism of lipid metabolism disorder in type 2 diabetes (T2DM) remains unclear. This study aimed to reveal the mechanism underlying dysregulated lipid metabolism in T2DM through bile acid metabolism. METHODS: A db/db mouse model was employed to investigate the alteration of bile acid profiles in T2DM. Ultrahigh-performance liquid chromatography with tandem mass spectrometry was used to quantify the detailed bile acid levels in each compartment of enterohepatic circulation. The pathological change of mouse liver was assessed by liver histology and serum biochemical assays. The expression level of bile acid-related transporters and synthases was measured with Western blot analysis. RESULTS: The results showed that T2DM can result in severe liver fat accumulation and liver damage. In addition, compared to the control group, in T2DM mice, bile acid synthesis is reduced, while the level of bile acids is increased at the storage sites and the reabsorption sites, but there are subtle gender differences. Further, the ratio of conjugated bile acids in total bile acid in the liver of T2DM mice increased significantly relative to the control group for both female and male mice. CONCLUSIONS: In T2DM, bile acid metabolism is disordered in both male and female mice, which could be the underlying mechanism of dysregulated lipid metabolism in T2DM.


Assuntos
Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Metabolismo dos Lipídeos , Animais , Ácidos e Sais Biliares/química , Cromatografia Líquida de Alta Pressão , Circulação Êntero-Hepática , Gorduras/química , Gorduras/metabolismo , Feminino , Humanos , Fígado/química , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Espectrometria de Massas em Tandem
8.
J Sci Food Agric ; 102(1): 132-138, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34057739

RESUMO

BACKGROUND: The human tongue is important in the oral processing of food and in sensory perception. Tongue topography could influence delicate differences in sensory perception. It is hypothesized that tongue surface roughness could alter oral lubrication status and affect perception of smoothness. Fifteen participants with varying levels of tongue surface roughness were recruited and tested. Participants' in situ oral lubrication status without and after consumption of fluid food (milk with varying fat content and maltodextrin solutions with different shear viscosities) was measured. Participants' smoothness sensory scores were also recorded. RESULTS: The in situ friction coefficient (0.299-1.505) was significantly positively correlated with tongue-surface roughness (54.6-140.0 µm) in all types of test fluid samples across participants. Oral lubrication was significantly decreased when participants consumed the test fluid samples compared with no liquid food consumption, for all test fluid sample types (P < 0.05). No significant differences in in situ friction coefficient were found after participants consumed different test fluid samples, and this was mainly attributed to the limited quantities of fluid residuals in the oral cavity after expectoration. Participants whose tongue surface roughness differed did not exhibit significant differences in smoothness perception with different test fluid samples. CONCLUSION: Tongue surface roughness has a strong impact on in situ oral lubrication, and fluid food intake reduces in situ oral lubrication significantly. Saliva film and tongue surface roughness might play greater roles in oral lubrication and smoothness sensory perception if fluid is expectorated after consumption. The association between oral physiology and texture perception still needs further elucidation. © 2021 Society of Chemical Industry.


Assuntos
Percepção Gustatória , Língua/química , Adulto , Animais , Gorduras/química , Gorduras/metabolismo , Feminino , Fricção , Humanos , Lubrificação , Masculino , Leite/química , Leite/metabolismo , Saliva/química , Saliva/fisiologia , Propriedades de Superfície , Língua/fisiologia , Viscosidade , Adulto Jovem
9.
Prep Biochem Biotechnol ; 52(1): 108-122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34289774

RESUMO

Using the statistical approach, this work seeks to optimize the process parameters to boost the generation of an organic solvent-tolerant lipase by Staphylococcus capitis SH6. The main parameters influencing the enzyme production were identified by using Plackett-Burman's screening design. Among the test variables, only tryptone (25 g/L), malt extract (2.5 g/L), NaCl (10 g/L) and pH (7.0) contributed positively to enzyme production. Then, the crude lipase was immobilized by adsorption on CaCO3 at pH 10. A maximum immobilization efficiency of 82% was obtained by incubating 280 mg of enzyme with CaCO3 (1 g) during 30 min. The immobilized lipase was more stable toward organic solvents than the free enzyme. It retained about 90% of its original activity in the presence of ethanol and methanol. After that, the immobilized enzyme was used for biodiesel production by transesterification process between waste oil and methanol or ethanol during 24 h at 30 °C. Our results show that the lipase can be utilized efficiently in biodiesel industry. Likewise, we have demonstrated that the immobilized enzyme may be implicated in the biodegradability of waste grease; the maximum conversion yield into fatty acids obtained after 12 h at 30 °C, was 57%.


Assuntos
Biocombustíveis , Enzimas Imobilizadas/metabolismo , Gorduras/metabolismo , Lipase/metabolismo , Staphylococcus capitis/enzimologia , Biodegradação Ambiental , Biocombustíveis/análise , Biocombustíveis/microbiologia , Esterificação , Solventes , Staphylococcus capitis/metabolismo
10.
BMC Plant Biol ; 21(1): 603, 2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34922450

RESUMO

BACKGROUND: Seeds of Paeonia ostii have been proposed as a source of raw material for the production of edible oil; however, lack of information about the developmental biology of the seeds hampers our ability to use them. Our aim was to investigate development of the seed coat, endosperm and embryo of P. ostii in relation to timing of accumulation of nutrient reserves from pollination to seed maturity. Ovules and developing seeds of P. ostii were collected at various stages of development from zygote to maturity. Seed fresh mass, dry mass, germination, moisture, soluble sugars, starch, protein and oil content were determined. Ontogeny of seeds including embryo, endosperm and seed coat were analyzed histologically. RESULTS: The ovule of P. ostii is anatropous, crassinucellate and bitegmic. The zygote begins to divide at about 5 days after pollination (DAP), and the division is not accompanied by cell wall formation. By 25 DAP, the proembryo begins to cellularize. Thereafter, several embryo primordia appear at the surface of the cellularized proembryo, but only one matures. Endosperm development follows the typical nuclear type. The seed coat is derived from the outer integument. During seed development, soluble sugars, starch and crude fat content increased and then decreased, with maximum contents at 60, 80 and 100 DAP, respectively. Protein content was relatively low compared with soluble sugars and crude fat, but it increased throughout seed development. CONCLUSIONS: During seed development in P. ostii, the seed coat acts as a temporary storage tissue. Embryo development of P. ostii can be divided into two stages: a coenocytic proembryo from zygote (n + n) that degenerates and a somatic embryo from peripheral cells of the proembryo (2n → 2n). This pattern of embryogeny differs from that of all other angiosperms, but it is similar to that of gymnosperms.


Assuntos
Paeonia/embriologia , Sementes/crescimento & desenvolvimento , Gorduras/metabolismo , Germinação , Paeonia/anatomia & histologia , Desenvolvimento Vegetal , Sementes/anatomia & histologia , Amido/metabolismo , Açúcares/metabolismo
11.
Bioengineered ; 12(2): 12323-12331, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34787072

RESUMO

To observe the effect of fat-derived pellets (FDP) on wound healing in rats, the inguinal fat of rats was obtained, and the FDP were obtained after centrifugation. The cell activity and growth factor secretion of FDP were measured. The wounds in rats were created, and FDP was used to treat the wounds of rats. The phenotype of macrophages and the expression of angiogenic factors expression in wounds were measured. The cell viability in FDP remains in high level after centrifugation and the expression of vascular endothelial growth factor (VEGF) and Basic Fibroblast Growth Factor (bFGF) from FDP was observed in vitro. The FDP significantly promoted the wound healing of rats compared with that in control groups. Moreover, the expression of M2 macrophages and VEGF in FDP group were significantly higher than that in the control group. FDP is a kind of stem cell product, which can be obtained from adipose tissue by physical centrifugation. The cytotherapeutic effect of FDP makes it a promising product for wound healing in clinics.


Assuntos
Gorduras/metabolismo , Cicatrização/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiologia , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Neovascularização Fisiológica/fisiologia , Ratos , Ratos Sprague-Dawley , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
12.
Sci Rep ; 11(1): 21401, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34725385

RESUMO

We aimed to determine if gluteus maximus (GMAX) fat infiltration is associated with different levels of physical activity. Identifying and quantifying differences in the intramuscular fat content of GMAX in subjects with different levels of physical activity can provide a new tool to evaluate hip muscles health. This was a cross-sectional study involving seventy subjects that underwent Dixon MRI of the pelvis. The individuals were divided into four groups by levels of physical activity, from low to high: inactive patients due to hip pain; and low, medium and high physical activity groups of healthy subjects (HS) based on hours of exercise per week. We estimated the GMAX intramuscular fat content for each subject using automated measurements of fat fraction (FF) from Dixon images. The GMAX volume and lean volume were also measured and normalized by lean body mass. The effects of body mass index (BMI) and age were included in the statistical analysis. The patient group had a significantly higher FF than the three groups of HS (median values of 26.2%, 17.8%, 16.7% and 13.7% respectively, p < 0.001). The normalized lean volume was significantly larger in the high activity group compared to all the other groups (p < 0.001, p = 0.002 and p = 0.02). Employing a hierarchical linear regression analysis, we found that hip pain, low physical activity, female gender and high BMI were statistically significant predictors of increased GMAX fat infiltration.


Assuntos
Nádegas/fisiologia , Exercício Físico , Gorduras/metabolismo , Músculo Esquelético/fisiologia , Adulto , Estudos Transversais , Gorduras/análise , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
13.
Sci Rep ; 11(1): 21535, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728674

RESUMO

The objectives of this study were to assess the fat fraction (FF) and cross-sectional area (CSA) of the sciatic nerve in Charcot-Marie-Tooth disease type 1A (CMT1A) patients using Dixon-based proton density fat quantification MRI and to elucidate its potential association with clinical parameters. Thigh MRIs of 18 CMT1A patients and 18 age- and sex-matched volunteers enrolled for a previous study were reviewed. Analyses for FF and CSA of the sciatic nerve were performed at three levels (proximal to distal). CSA and FF were compared between the two groups and among the different levels within each group. The relationship between the MRI parameters and clinical data were assessed in the CMT1A patients. The CMT1A patients showed significantly higher FF at level 3 (p = 0.0217) and significantly larger CSA at all three levels compared with the control participants (p < 0.0001). Comparisons among levels showed significantly higher FF for levels 2 and 3 than for level 1 and significantly larger CSA for level 2 compared with level 1 in CMT1A patients. CSA at level 3 correlated positively with the CMT neuropathy score version 2 (CMTNSv2). In conclusion, the sciatic nerve FF of CMT1A patients was significantly higher on level 3 compared with both the controls and the measurements taken on more proximal levels, suggesting the possibility of increased intraepineurial fat within the sciatic nerves of CMT1A patients, with a possible distal tendency. Sciatic nerve CSA at level 3 correlated significantly and positively with CMTNSv2, suggesting its potential value as an imaging marker for clinical severity.


Assuntos
Doença de Charcot-Marie-Tooth/patologia , Gorduras/análise , Imageamento por Ressonância Magnética/métodos , Nervo Isquiático/patologia , Adolescente , Adulto , Estudos de Casos e Controles , Doença de Charcot-Marie-Tooth/metabolismo , Criança , Pré-Escolar , Estudos Transversais , Gorduras/metabolismo , Feminino , Humanos , Masculino , Nervo Isquiático/metabolismo , Adulto Jovem
14.
Elife ; 102021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34672260

RESUMO

Sex differences in whole-body fat storage exist in many species. For example, Drosophila females store more fat than males. Yet, the mechanisms underlying this sex difference in fat storage remain incompletely understood. Here, we identify a key role for sex determination gene transformer (tra) in regulating the male-female difference in fat storage. Normally, a functional Tra protein is present only in females, where it promotes female sexual development. We show that loss of Tra in females reduced whole-body fat storage, whereas gain of Tra in males augmented fat storage. Tra's role in promoting fat storage was largely due to its function in neurons, specifically the Adipokinetic hormone (Akh)-producing cells (APCs). Our analysis of Akh pathway regulation revealed a male bias in APC activity and Akh pathway function, where this sex-biased regulation influenced the sex difference in fat storage by limiting triglyceride accumulation in males. Importantly, Tra loss in females increased Akh pathway activity, and genetically manipulating the Akh pathway rescued Tra-dependent effects on fat storage. This identifies sex-specific regulation of Akh as one mechanism underlying the male-female difference in whole-body triglyceride levels, and provides important insight into the conserved mechanisms underlying sexual dimorphism in whole-body fat storage.


Assuntos
Proteínas de Drosophila/genética , Gorduras/metabolismo , Hormônios de Inseto/metabolismo , Proteínas Nucleares/genética , Oligopeptídeos/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Feminino , Masculino , Proteínas Nucleares/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Processos de Determinação Sexual , Fatores Sexuais
15.
Life Sci ; 285: 119997, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34597608

RESUMO

AIM: Sirtuin 2 (SIRT2) is a NAD+-dependent deacetylase involved in various biological functions via deacetylation of proteins, including histone protein. Hepatic fat accumulation from aging and excess caloric intake contribute to development of non-alcoholic fatty liver disease. The study aim was to elucidate the role of SIRT2 in lipid metabolism homeostasis. MATERIALS AND METHODS: SIRT2+/+ (C57BL/6) and SIRT2-/- were randomly assigned to normal diet or high-fat diet (HFD) groups and fed for 6 weeks. Histological features of the livers were evaluated by hematoxylin and eosin and Masson's trichrome staining, and the levels of selected factors were determined by quantitative reverse transcription-polymerase chain reaction and western blot analysis. KEY FINDINGS: Although the SIRT2-/- mice were viable, their livers exhibited higher glycogen accumulation, and skeletal muscle showed features of increased metabolic demand. The SIRT2-/- mice attenuated HFD-induced weight gain, visceral adipose tissue formation, and fat accumulation in the liver in which the expressions of genes involved in metabolic substrate transport were modified. Additionally, the hepatocellular senescence and upregulated cell-cycle factors upon HFD intake in SIRT2-/- livers suggested a role of SIRT2 in gene expression during abnormal metabolism. Moreover, the fibrotic phenotype of liver tissue without fat accumulation and the increased expression of genes involved in liver fibrosis in the HFD-fed SIRT2-/- mice indicated that SIRT2 had a role in hepatocyte and hepatic stellate cell activation. SIGNIFICANCE: Our results indicated that SIRT2 has a critical role in regulating lipid metabolic homeostasis and in sustaining liver integrity by modulating related gene expression.


Assuntos
Gorduras/metabolismo , Cirrose Hepática/metabolismo , Sirtuína 2/fisiologia , Animais , Senescência Celular , Dieta Hiperlipídica , Glicogênio/metabolismo , Homeostase , Gordura Intra-Abdominal/metabolismo , Fígado/citologia , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sirtuína 2/genética , Aumento de Peso/genética
16.
Sci Rep ; 11(1): 18573, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535697

RESUMO

"Western diet" containing high concentrations of sugar and fat consumed during pregnancy contributes to development of obesity and diabetes type 2 in offspring. To mimic effects of this diet in animals, a cafeteria (CAF) diet is used. We hypothesized that CAF diet given to rats before, and during pregnancy and lactation differently influences fat content, metabolic and inflammation profiles in offspring. Females were exposed to CAF or control diets before pregnancy, during pregnancy and lactation. At postnatal day 25 (PND 25), body composition, fat contents were measured, and blood was collected for assessment of metabolic and inflammation profiles. We have found that CAF diet lead to sex-specific alterations in offspring. At PND25, CAF offspring had: (1) higher percentage of fat content, and were lighter; (2) sex-specific differences in levels of glucose; (3) higher levels of interleukin 6 (IL-6), interleukin-10 (IL-10) and tumor necrosis factor (TNF-α); (4) sex-specific differences in concentration of IL-6 and TNF-α, with an increase in CAF females; (5) higher level of IL-10 in both sexes, with a more pronounced increase in females. We concluded that maternal CAF diet affects fat content, metabolic profiles, and inflammation parameters in offspring. Above effects are sex-specific, with female offspring being more susceptible to the diet.


Assuntos
Gorduras/metabolismo , Inflamação/metabolismo , Metaboloma , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Animais Recém-Nascidos , Composição Corporal , Dieta , Gorduras/análise , Feminino , Humanos , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Gravidez , Fenômenos Fisiológicos da Nutrição Pré-Natal , Ratos , Ratos Wistar , Caracteres Sexuais
17.
Biochim Biophys Acta Gen Subj ; 1865(11): 129991, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34419510

RESUMO

Mitochondrial-derived peptides (MDPs) are encoded by the mitochondrial genome and hypothesised to form part of a retrograde signalling network that modulates adaptive responses to metabolic stress. To understand how metabolic stress regulates MDPs in humans we assessed the association between circulating MOTS-c and SHLP2 and components of metabolic syndrome (MS), as well as depot-specific fat mass in participants without overt type 2 diabetes or cardiovascular disease. One-hundred and twenty-five Chinese participants (91 male, 34 female) had anthropometry, whole body dual-energy X-ray absorptiometry scans and fasted blood samples analysed. Chinese female participants and an additional 34 European Caucasian female participants also underwent magnetic resonance imaging and spectroscopy (MRI/S) for visceral, pancreatic and liver fat quantification. In Chinese participants (age = 41 ± 1 years, BMI = 27.8 ± 3.9 kg/m2), plasma MOTS-c (315 ± 27 pg/ml) and SHLP2 (1393 ± 82 pg/ml) were elevated in those with MS (n = 26). While multiple components of the MS sequelae positively associated with both MOTS-c and SHLP2, including blood pressure, fasting plasma glucose and triglycerides, the most significant of these was waist circumference (p < 0.0001). Android fat had a greater effect on increasing plasma MOTS-c (p < 0.004) and SHLP2 (p < 0.009) relative to whole body fat. Associations with MRI/S parameters corrected for total body fat mass revealed that liver fat positively associated with plasma MOTS-c and SHLP2 and visceral fat with SHLP2. Consistent with hepatic stress being a driver of circulating MDP concentrations, plasma MOTS-c and SHLP2 were higher in participants with elevated liver damage markers and in male C57Bl/6j mice fed a diet that induces hepatic lipid accumulation and damage. Our findings provide evidence that in the absence of overt type 2 diabetes, components of the MS positively associated with levels of MOTS-c and SHLP2 and that android fat, in particular liver fat, is a primary driver of these associations. MOTS-c and SHLP2 have previously been shown to have cyto- and metabolo-protective properties, therefore we suggest that liver stress may be a mitochondrial peptide signal, and that mitochondrial peptides are part of a hepatic centric-hormetic response intended to restore metabolic balance.


Assuntos
Gorduras/metabolismo , Metiltestosterona/metabolismo , Proteínas Mitocondriais/metabolismo , Adolescente , Adulto , Idoso , Povo Asiático , Feminino , Humanos , Fígado/química , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/sangue , Adulto Jovem
18.
Nutrients ; 13(8)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34444773

RESUMO

Structural differences in dietary fatty acids modify their rate of oxidation and effect on satiety, endpoints that may influence the development of obesity. This study tests the hypothesis that meals containing fat sources with elevated unsaturated fats will result in greater postprandial energy expenditure, fat oxidation, and satiety than meals containing fats with greater saturation. In a randomized, 5-way crossover design, healthy men and women (n = 23; age: 25.7 ± 6.6 years; BMI: 27.7 ± 3.8 kg/m2) consumed liquid meals containing 30 g of fat from heavy cream (HC), olive oil (OO), sunflower oil (SFO), flaxseed oil (FSO), and fish oil (FO). Energy expenditure and diet-induced thermogenesis (DIT) were determined by metabolic rate over a 240 min postprandial period. Serum concentrations of ghrelin, glucose, insulin, and triacylglycerol (TAG) were assessed. DIT induced by SFO was 5% lower than HC and FO (p = 0.04). Energy expenditure and substrate oxidation did not differ between fat sources. Postprandial TAG concentrations were significantly affected by fat source (p = 0.0001). Varying fat sources by the degree of saturation and PUFA type modified DIT but not satiety responses in normal to obese adult men and women.


Assuntos
Gorduras na Dieta/farmacologia , Ácidos Graxos Insaturados/farmacologia , Ácidos Graxos/farmacologia , Saciação/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Adolescente , Adulto , Estudos Cross-Over , Metabolismo Energético/efeitos dos fármacos , Gorduras/química , Gorduras/metabolismo , Gorduras/farmacologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Insaturados/química , Feminino , Humanos , Masculino , Refeições , Pessoa de Meia-Idade , Obesidade/metabolismo , Azeite de Oliva/farmacologia , Oxirredução , Período Pós-Prandial/efeitos dos fármacos , Resposta de Saciedade/efeitos dos fármacos , Adulto Jovem
19.
Artigo em Inglês | MEDLINE | ID: mdl-34464736

RESUMO

Bisphenol S (BPS) has been gradually used in all kinds of productions. Our previous study has demonstrated that BPS increases the obesogenic effects of a high-glucose diet through regulating lipid metabolism in Caenorhabditis elegans (C. elegans). Whether the effects pass on to the next generations remains uncovered. In the present study, C. elegans was selected as the model organism to investigate the effects of BPS on lipid metabolism in multiple generations. Oil Red O staining and triglyceride assays showed that multi-generational exposure to BPS in C. elegans significantly increased the fat accumulation in wild type worms, while not in the daf-16 gene-deficient worms. In addition, BPS affected the expressions of fat-7 and acs-2 in four generations of C. elegans. Furthermore, BPS promotes fat storage in C. elegans of multiple generations by the daf-16/nhr-49-mediated signaling pathway.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efeitos dos fármacos , Gorduras/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fenóis/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfonas/toxicidade , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição Forkhead/genética , Metabolismo dos Lipídeos , Receptores Citoplasmáticos e Nucleares/genética
20.
Cells ; 10(8)2021 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-34440862

RESUMO

CEACAM1 regulates endothelial barrier integrity. Because insulin signaling in extrahepatic target tissues is regulated by insulin transport through the endothelium, we aimed at investigating the metabolic role of endothelial CEACAM1. To this end, we generated endothelial cell-specific Ceacam1 null mice (VECadCre+Cc1fl/fl) and carried out their metabolic phenotyping and mechanistic analysis by comparison to littermate controls. Hyperinsulinemic-euglycemic clamp analysis showed intact insulin sensitivity in VECadCre+Cc1fl/fl mice. This was associated with the absence of visceral obesity and lipolysis and normal levels of circulating non-esterified fatty acids, leptin, and adiponectin. Whereas the loss of endothelial Ceacam1 did not affect insulin-stimulated receptor phosphorylation, it reduced IRS-1/Akt/eNOS activation to lower nitric oxide production resulting from limited SHP2 sequestration. It also reduced Shc sequestration to activate NF-κB and increase the transcription of matrix metalloproteases, ultimately inducing plasma IL-6 and TNFα levels. Loss of endothelial Ceacam1 also induced the expression of the anti-inflammatory CEACAM1-4L variant in M2 macrophages in white adipose tissue. Together, this could cause endothelial barrier dysfunction and facilitate insulin transport, sustaining normal glucose homeostasis and retaining fat accumulation in adipocytes. The data assign a significant role for endothelial cell CEACAM1 in maintaining insulin sensitivity in peripheral extrahepatic target tissues.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Células Endoteliais/metabolismo , Resistência à Insulina , Adipócitos/metabolismo , Animais , Antígeno Carcinoembrionário/genética , Endotélio Vascular/metabolismo , Gorduras/metabolismo , Glucose/metabolismo , Inflamação , Insulina/metabolismo , Resistência à Insulina/genética , Fígado/citologia , Fígado/metabolismo , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...